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inverse power of the distance. We discuss in detail the example of scale-free trees where the diverging second
moment of the degree distribution leads to some interesting phenomena.

DOI: 10.1103/PhysRevE.81.041136 PACS number�s�: 05.90.�m, 89.75.Hc, 05.10.�a

I. INTRODUCTION

The knowledge of correlations is important and interest-
ing for any system. Looking from the practical point of view
correlation means additional information: if two quantities
are correlated, the knowledge of one of them implies certain
information about the other one. In physical systems corre-
lations usually indicate interactions between parts of the sys-
tem. The prototypical example is given by the Ising spin
system where the nearest-neighbors interactions induce long-
range correlations leading to a phase transition.

The situation in random graphs is somewhat different. It
is known that for random geometries even in the absence of
any explicit terms inducing interactions between vertices
their degree may be correlated �1–9�. Moreover, those corre-
lations are long-range, i.e., they fall off as some power of
distance �1–4�. They are generated by model constraints
rather than by explicit interactions. It should be also stressed
that the distance dependent correlation functions in the en-
semble of random graphs are much more complicated ob-
jects than their fixed lattice counterparts �1,3�. To see that let
us take some generic correlation function on random graphs

��
i,j

A�qi�B�qj��l,�i−j�� , �1�

where qi denotes the degree of the vertex i, i.e., the number
of branches emerging from it. A and B are some arbitrary
functions depending on the vertex degree and �i− j� is the
graph �geodesic� distance between vertices i and j. For ran-
dom geometry it makes no sense in general to choose two
fixed points—that is why we sum over all the pairs of points
on the graph. The graph distance is the length of the shortest
path between those two vertices and as such it is dependent
on the whole graph. That means that the above expression is
not a two-point function but a highly nonlocal object. That is
a fundamental difference between random and fixed geom-
etries.

In this paper, we study in detail correlations between de-
grees of vertices as a function of distance. We consider an
ensemble of all labeled trees T�V� with a fixed number of

vertices V, on which we define the probability measure

P�T� 	 �V
−1 1

V! 
i�T

wqi
. �2�

�V denotes the partition function of this ensemble �normal-
ization factor� and qi is the degree of vertex i; wq’s �q�0�
are some non-negative numbers �weights�. This is a
maximal-entropy ensemble with a given degree distribution
�see Appendix�. An important property of the measure �2� is
that it factorizes into a product of one-point measures, so it
does not introduce any explicit correlations. This means that
any observed correlations arise from the fact that we con-
sider a specific set of graphs and not from the measure itself.

We show that the connected degree-degree correlations
are not zero and fall off with the distance as l−2

�̄q,r
con�l� = �̄q,r�l� − �̄q�l��̄r�l� = −

�q − 2��r − 2�
�2 + ��q2� − 4��l − 1��2�q�r.

�3�

Here �̄q,r�l� is the joint probability that two vertices distance
l apart will have degrees q and r, respectively. Those corre-
lations are disassortative. The average degree of the distance
l neighbors of a vertex with degree q decreases

k̄l�q� = 2 +
�q2� − 4

q + ��q2� − 4��l − 1�
. �4�

For l=1 this reduces to the results obtained in Ref. �9�. In the
following sections we provide the detailed definitions of the
quantities introduced above and derive those results. We will
also discuss what happens for the scale-free trees when �q2�
diverges.

The paper is organized as follows: Sec. II introduces some
basic definitions concerning correlations in random trees.
Then we derive the vertex degree distribution using the field
theory approach in Sec. III and proceed on in Sec. III A
calculating the distance dependent correlation functions. Two
examples of Erdös-Rényi and scale-free trees are given in
Secs. III B and III C, respectively. In the following Sec. III D
the results for scale-free trees are verified using Monte Carlo
�MC� simulations. Final discussion and summary of our re-
sults are given in Sec. IV.
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II. CORRELATIONS

For each graph we introduce

nq,r�l� 	 �
i,j�G

�qi,q
�qj,r

��i−j�,l, �5�

which is the number of pairs of points with degrees q and r
separated by the distance l. We define two further quantities:
the number of pairs at the distance l with one end point of
specified degree

nq�l� 	 �
r

nq,r, �6�

and the number of all pairs of vertices at the distance l

n�l� 	 �
q,r

nq,r�l� . �7�

If we want to define the joint probability �q,r�l� we have two
obvious choices. The first one is

�q,r�l� 	 � nq,r�l�
n�l� �n�l��0

, �8�

where the subscript denotes that we restrict the average to the
ensemble of graphs for which n�l� is not zero. The second
possibility is to use

�̄q,r�l� 	
�nq,r�l��
�n�l��

. �9�

In Ref. �8� we have argued that the first quenched definition
is more natural in the context of random graphs. However, it
is much more difficult to work with. In this paper we will
assume that the ensemble of generic trees is self-averaging
and the two above definitions are equivalent. For a more
detailed discussion of this issue we refer to �8�. Similarly we
define

�̄q�l� 	
�nq�l��
�n�l��

, �10�

and the connected two point probability

�̄q,r
con�l� 	 �̄q,r�l� − �̄q�l��̄r�l� . �11�

We further define the connected correlation function �1–3�

�q̄,r̄
con�l� 	 �

q,r
qr�̄q,r

con�l� . �12�

Finally we define average degree of the vertices at the dis-
tance l from a vertex of degree q as follows:

k̄l�q� 	
�nq,r̄�l��

�nq�l��
, �13�

where

nq,r̄�l� 	 �
r

rnq,r. �14�

III. GENERIC RANDOM TREES

We consider an ensemble of all labeled trees with the
probability measure �2�. The partition function �V is defined

as the sum of the weights of all the trees in the ensemble

�V 	
1

V! �
T�T�V�



i�T

wqi
. �15�

The partition function of the corresponding grand-canonical
ensemble is defined by the discrete Laplace transform

���� = �
V=1

�

e−�V�V. �16�

We will use the field theory approach to calculate it �14�. We
define the function

W��� 	  d	 exp�N�−
1

2
	2 + e−��

q=0

wq

q!
	q�� . �17�

Its formal perturbative expansion in e−� will generate Feyn-
man’s diagrams with desired weights and symmetry factors
�for an introduction see any textbook on field theory, e.g.,
Refs. �10� and �11� or Ref. �12��. This expansion will, how-
ever, contain all the graphs including those which are not
connected or contain loops. We can restrict the expansion to
connected graphs only by considering the function log W���.
To obtain just the tree graphs we will use the expansion in
N−1. According to Feyman’s rules for the expression �17�
each edge in the graph introduces a factor N−1 and each
vertex a factor N which together contribute N−E+V, where E
is the number of edges in the graph. If L is the number of
independent loops in the graph then E−V=L−1, so the first
term of the N−1 expansion will group graphs with no loops,
the second one graphs with one loop, and so on.

That means that the contribution of tree graphs is given by
the first term in the saddle-point approximation. The saddle-
point equation is

d

d	
�−

1

2
	2 + e−��

q=0

�
wq

q!
	q� = 0. �18�

We will denote by Z��� the solution of the above equation
and rewrite it as

Z��� = e−��
q=1

�
wq

�q − 1�!
Zq−1 = e−�F�Z����

Z���
, �19�

where

F�Z� 	 �
q=1

�
wq

�q − 1�!
Zq. �20�

Inserting Eq. �19� into Eq. �17� and taking the logarithm to
keep only connected graphs we obtain

���� = e−��
q=0

�
wq

q!
Zq��� −

1

2
Z2��� . �21�

It is easy to check that

e−�Z��� =
�����

�w1
. �22�

Figure 1 shows a graphical interpretation of Z���: it is the
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partition function of the ensemble of planted trees �23�.
Planted trees are the trees with a stem attached to one of the
vertices. Its properties and resulting critical behavior were
calculated in Refs. �13–15�. The model has two main phases.
In the so called generic or tree phase the the function
F�Z� /Z2 has a minimum inside its domain �see Fig. 2� and so
Eq. �19�, which can be rewritten as

e� =
F�Z�
Z2 , �23�

does not have any solution for �
�0. The function Z��� has
a singularity at �0 given by the condition for the minimum

2F�Z0� = Z0F��Z0�, and �0 = log
F�Z0�

Z0
2 . �24�

At this singularity the partition function behaves like

Z��� � Z0 − Z1
�� − �0 + Z2�� − �0� , �25�

regardless of the form of the weights wq. In this contribution
we will limit our self to this phase only. Inserting the
expansion �25� into Eq. �19� and expanding to the order
��	�−�0 �Z2 cancels in the resulting equation� we obtain

Z0
2

Z1
2 =

1

2

F��Z0�Z0
2

F�Z0�
− 1. �26�

The vertex degree distribution of this model was calcu-
lated using the correspondence with the balls in boxes model
in Ref. �16�. Here we rederive it using a different method
which can be easily extended to the case of two-point corre-
lations studied in Ref. �4�. Let us denote by ��q ;�� the
partition function of the rooted grand-canonical ensemble of
trees with the condition that the degree of the root is q. Then

��q;�� = wq
�����
�w�q�

= e−�wq

q!
Zq��� . �27�

The graphical interpretation of this equation is shown in
Fig. 3. The sought degree distribution is proportional to the
canonical partition function �V�q�. Inserting the expansion
�25� into Eq. �27� we obtain

��q;�� � e�ce��wq

q!
Z0

q�1 − q
Z1

Z0

����
� e�ce��wq

q!
Z0

q exp�− q
Z1

Z0

���� . �28�

The last expression has a known inverse Laplace transform

e−a��� ↔Lap. 1

2��

a

V3/2e−a2/4V, �29�

so finally keeping only the first terms in the V−1 expansion
and fixing the normalization we obtain the formula

��q� =
1

F�Z0�
wqZ0

q

�q − 1�!
. �30�

Using the above formula we can give an interpretation of the
right-hand side of Eq. �26�

1

2

F��Z0�Z0
2

F�Z0�
− 1 =

1

2

�
q=1

q�q − 1�
�q − 1�!

wqZ0
q

F�Z0�
− 1

=
1

2�
q=1

q�q − 1���q� − 1

=
1

2
��q2� − 4� . �31�

Here we have used the fact that on trees the average degree
�q�=2 �in the large V limit�. Please note that

�q2� − 4 = ��q − 2�2� � 0. �32�

The �q2� is equal to 4 only in the 1→0 limit.

+ += . . .

FIG. 1. Graphical representation of Eq. �19�. Each gray bubble
corresponds to the sum over planted trees given by the partition
function Z���. Branches without a vertex �small empty circle� at
one end denote a stem.

F (Z)

Z2

Z0 Z

eµ0

FIG. 2. Graphical representation of Eq. �23� and the singularity
of Z���.

FIG. 3. Graphical representation of the partition function
��q ,�� given by Eq. �27� for q=4. Each gray bubble corresponds
to the sum over planted trees given by the partition function Z���;
the smaller black circle represents the root which contributes a
weight factor e−�w4; the additional 1

4! factor comes from the fact
that the relative position of branches in the compound tree is
irrelevant.
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A. Correlations in generic random trees

We proceed as in the previous section but this time we
introduce a partition function �l�q ,r ;�� of all the trees with
two points marked, such that the points are at the distance l
and have degrees q and r, respectively. Because we are con-
sidering the trees there is exactly one path linking the two
marked vertices �see Fig. 4�. As in the previous section we
can express the partition function �l�q ,r ;�� by Z��� �3,17�

�l�q,r;�� =
e−�wq

�q − 1�!
Zq−1���

e−�wr

�r − 1�!
Zr−1���

� �e−��
k=2

wk

�k − 2�!
Zk−2�l−1

. �33�

The last term comes from the vertices along the path for
which we have to sum up all the possible insertions of the
Z��� function �see Fig. 5�. This summation can be done in
the following way:

e−��
q=2

wq

�q − 2�!
Zq−2 = e−� �

�Z�
q=1

wq

�q − 1�!
Zq−1 = e−� �

�Z

F�Z�
Z

.

�34�

Differentiating Eq. �19� with respect to � we come to the
relation

Z�����1 − e−� �

�Z

F�Z�
Z

� = − Z . �35�

Using it we finally obtain

e−��
q=2

wq

�q − 2�!
Zq−2 = 1 +

Z���
Z����

. �36�

Inserting into Eq. �33� first the above formula and then the
expansion �25� we get

�l�p,q;�� �
wq

�q − 1�!
wr

�r − 1�!
Z0

q+r−2

��1 −
Z1

Z0

����q+r−2�1 − 2
Z0

Z1

����l−1

. �37�

This can be further approximated by

�l�p,q;�� �
wq

�q − 1�!
wr

�r − 1�!
Z0

q+r−2

� e−�Z1/Z0�q+r−2�+2�Z0/Z1��l−1�����, �38�

and using Eq. �29� we obtain to the leading order in V

�nqr� � �l�p,q;V� �
wq

�q − 1�!
wr

�r − 1�!
Z0

q+r−2

��Z1

Z0
�q + r − 2� + 2

Z0

Z1
�l − 1�� . �39�

Finally, we get

�̄q,r�l� = �q�r
�q + r − 2� + ��q2� − 4��l − 1�

2 + ��q2� − 4��l − 1�
, �40�

�̄q�l� = �q
q + ��q2� − 4��l − 1�
2 + ��q2� − 4��l − 1�

. �41�

Inserting this into Eqs. �11� and �13� we obtain the results �3�
and �4�. Summing up Eq. �3� over q and r we get the con-
nected correlation function �12�

�̄q̄,r̄
con�l� = −

��q2� − 4�2

�2 + ��q2� − 4��l − 1��2 . �42�

B. Example 1

In the first example we put wq=1, so all the trees in the
ensemble have the same weight. In this case F�Z�=ZeZ. The
solution of Eq. �24� is Z0=1 from which follows:

�q =
1

e

1

�q − 1�!
, �q2� = �

q=1

�
1

e

q2

�q − 1�!
= 5, �43�

leading to

�̄q�l� = �q
q + l − 1

1 + l
, �44�

�̄q,r
con�l� = −

1

e2

�q − 2��r − 2�
�l + 1�2

1

�q − 1�!
1

�r − 1�!
, �45�

and

�̄q̄,r̄
con�l� = −

1

�l + 1�2 , k̄l�q� = 2 +
1

q + l − 1
. �46�

FIG. 4. Graphical representation of the partition function
�l�q ,r ;�� given by Eq. �33� for q=4 and r=3. Gray bubbles cor-
respond to the partition function Z��� and the smaller black circles
mark the vertices with degrees q and r; double circles represent the
l−1 vertices along the path connecting them in which we sum over
all possible insertions of the Z��� function �see Fig. 5�.

= + + ...

FIG. 5. Double circles denote the summation over all possible
insertions of the Z��� function �gray bubbles�.
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C. Example 2: Scale-free trees

In this example we choose wq=q−��q−1�! which corre-
sponds to the planar graphs studied in Refs. �13� and �15�.
Then F�Z� is given by the polylogarithm function Li��Z�

F�Z� = �
q=1

�
Zq

q� 	 Li��Z� , �47�

and Eq. �24� takes the form 2Li��Z0�=Li�−1�Z0�. It has the
solution for �
�C with �C�2.4788 given by 2���C�
=���C−1�. At the critical value of �=�C the partition func-
tion no longer scales as in Eq. �25� and in principle we can-
not use the Laplace transform Eq. �29� anymore. However,
as shown in Ref. �18� the large V behavior is not changed
and we expect our formula to hold in the large V limit. From
Eq. �30� we read-off the degree distribution

��q� =
q−�Z0

q−1

F�Z0�
. �48�

At the critical value of �, Z0=1 and the vertex degree distri-
bution is scale free. The average

�q2� = 2 +
1

Li��Z0�
�Li�−2�Z0� − Li�−1�Z0�� , �49�

diverges as �→�C. Formula �3� leads for l�1 to

lim
V→�

�̄q,r
con�l� = 0. �50�

This would imply that the correlations vanish in the large V
limit. However, this limit �50� is not uniform. It is easy to
check that the integrated correlation functions do not disap-
pear

lim
V→�

�̄q̄,r̄
con�l� = −

1

�l − 1�2 , �51�

and

lim
V→�

k̄l�q� = 2 +
1

l − 1
. �52�

Please note that the above results are universal and valid for
any kind of scale-free trees with �
3.

D. Monte Carlo simulations

The results obtained in the previous sections are valid
only in the strict V→� limit and it is clear that for finite V
our formulas will not hold for any l. Defining the average
distance on a graph

�l� = �
l

l
n�l�
V2 , �53�

we may expect that the formulas will be valid only for
l� �l�. The scaling of �l� with the graph size depends on the
Hausdorff’s dimension dH

�l� � V1/dH. �54�

For generic trees considered here dH=1 /2. For scale-free
trees considered in example 2 we expect

dH =
1

�
, � =

�C − 2

�C − 1
, �55�

which gives dH�3. In the case of scale-free trees the volume
dependence manifests itself by the cutoff in the degree dis-
tribution �q as well �19�.

Expecting finite size effects to be more severe in the
scale-free trees, we checked the V dependence performing
MC simulations of the ensemble described in the example 2.
We have used an algorithm similar to “baby-universe sur-
gery” �20�. The basic move consisted of picking up an edge
at random and cutting it. Then the smaller of the two result-
ing trees was grafted on some vertex of the bigger one. The
most time consuming part of the algorithm was to find which
tree was smaller. To save time the two trees were traversed
simultaneously until one of them was filled completely. Ad-
ditionally, to pick the attachment point from the bigger tree
efficiently, the vertices of the trees were marked during the
traversal. This move was supplemented with moves consist-
ing of cutting up leaf nodes and attaching them to some other
parts of the tree. This was much faster as it did not require
traversing the tree. However, the autocorrelation time for
such moves alone was much higher, especially for the scale-
free trees. Because those trees are at the phase transition
between the generic and the crumpled phase �15� the auto-
correlation time is high even for the tree grafting algorithm.

We have simulated trees of the size up to 128 000 verti-
ces. To verify to which extent the ensemble is self-averaging
we measured the quenched quantities which we then com-
pared to our predictions. In Fig. 6 we have plotted the mea-
sured

�
�

�� �� �� ��
�� ��

��

� � �� �� �� ��
��

� �� �� �� ��
��

��
��

�
�

��
��

��
��

��
�� �� ��

� �� �� �� �� ��
��

0 1 2 3 4 5 6 7

2.2

2.4

2.6

2.8

3.0

l = 2
��
��

l = 3
��
��

l = 4
��
��

l = 5��
��

l = 6��

0 1 2 3 4 5 6 7

2.2

2.4

2.6

2.8

3.0

0 1 2 3 4 5 6 7

2.2

2.4

2.6

2.8

3.0

l = 2
l = 3
l = 4
l = 5
l = 6

qqq

k
l(

q)
k

l(
q)

k
l(

q)

FIG. 6. �Color online� Average degree of distance l neighbors
kl�q� for l=2 to 6 and trees with 64 000 �empty symbols� and
128 000 �filled symbols� vertices. Each symbol denotes different l;
straight lines are the predictions given by Eq. �52�.
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kl�q� = � nq,r̄�l�

nq�l� � , �56�

as a function of q for various values of l. Please note the
large finite size effects for l=2. This is to be expected: For
finite V the �q2� is also finite and actually grows slowly with
V �19�. For larger l the agreement with our results is quite
good. Figure 7 shows the quenched correlation function

�q̄,r̄
con�l� = � nq̄,r̄�l�

n�l� � − � nq̄�l�

n�l� �2

, �57�

which is also well reproduced by our results.

IV. SUMMARY AND DISCUSSION

The appearance of the long-range correlations in generic
trees is puzzling. Usually we expect the powerlike �scale-
free� behavior to be manifested in systems at the criticality.
The trees studied here apart from the scale-free example are,
however, not critical. The free-energy density can be calcu-
lated in the infinite volume limit and remains an analytic
function of the weights q �15,16�. It has been also shown
that the critical behavior in random trees is not associated
with the diverging correlation length �21�. The correlations
described here are thus of the structural and not of dynamical
origin. A possible mechanism explaining it was proposed in
Refs. �2� and �8�: in connected graphs vertices of degree one
must have neighbors of degree greater than one. It remains,
however, to be understood how this effect can be propagated
to larger distances.
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APPENDIX: MAXIMAL ENTROPY

For each choice of the weights wq and a given number of
vertices V the ensemble �2� has a well defined degree distri-
bution ��q�. Asymptotically for large V this distribution is
given by Eq. �30�. Reference �22� contains a proof that the
probability measure �2� has maximal entropy among all the
measures producing the distribution ��q�. Here we repeat
their arguments for completeness.

We start with an expression for the entropy plus the nec-
essary Lagrange multipliers to force the constraints

S = −
1

V! �
T�T

P�T�log P�T� +
�

V! �
T�T

P�T�

+ �
q=1

V
�q

V!��
T�T

nq�T�P�T� − ��q�V� . �A1�

Differentiating the above with respect to P�T� we get

log P�T� = � − 1 + �
q

�qnq�T� , �A2�

leading to

P�T� = e�−1

q

e�qnq�T�. �A3�

Putting

e�−1 =
�V

V!
, and e�q = wq �A4�

we obtain Eq. �2�. We will now prove that this measure is a
unique solution of Eq. �A1� satisfying the constraints, at least
in the V→� limit. Let us assume that we have another set of
weights w̃q that produces the same probability distribution
��q� �30�

��q� =
1

F�Z0�
wqZ0

q

�q − 1�!
=

1

F�Z̃0�

w̃qZ0
q

�q − 1�!
. �A5�

It follows that:

w̃q =
F�Z̃0�
F�Z0��Z0

Z̃0
�q

wq, �A6�

hence



i�T

w̃qi
= 


i�T

F�Z̃0�
F�Z0��Z0

Z̃0
�qi

wqi
= �F�Z̃0�

F�Z0��
V�Z0

Z̃0
��i�Tqi



i�T

wqi
.

�A7�

But this gives identical probability measure to Eq. �2� be-
cause of the condition �i�Tqi=2V−2 valid for each tree T.
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FIG. 7. �Color online� Connected correlation function �q̄,r̄
con�l�

for scale-free trees with 64 000 �empty circles� and 128 000 �filled
diamonds� vertices. The solid line represents the prediction given
by Eq. �51�.

PIOTR BIALAS AND ANDRZEJ K. OLEŚ PHYSICAL REVIEW E 81, 041136 �2010�

041136-6



�1� B. V. de Bakker and J. Smit, Nucl. Phys. B 454, 343 �1995�.
�2� P. Bialas, Phys. Lett. B 373, 289 �1996�.
�3� P. Bialas, Nucl. Phys. B, Proc. Suppl. 53, 739 �1997�.
�4� P. Bialas, Nucl. Phys. B 575, 645 �2000�.
�5� R. Pastor-Satorras, A. Vazquez, and A. Vespignani, Phys. Rev.

Lett. 87, 258701 �2001�.
�6� S. Maslov, K. Sneppen, and A. Zaliznyak, Physica A 333, 529

�2004�.
�7� J. Park and M. E. J. Newman, Phys. Rev. E 68, 026112 �2003�.
�8� P. Bialas and A. K. Oleś, Phys. Rev. E 77, 036124 �2008�.
�9� J. Kim, B. Kahng, and D. Kim, Phys. Rev. E 79, 067103

�2009�.
�10� J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,

The Theory of Critical Phenomena �Oxford University Press,
Oxford, 1993�.

�11� P. Cvitanović, Field Theory, Nordita Lecture Notes �1983�;
http://chaosbook.org/FieldTheory/

�12� D. Bessis, C. Itzykson, and J.-B. Zuber, Adv. Appl. Math. 1,
109 �1980�.

�13� J. Ambjorn, B. Durhuus, J. Frohlich, and P. Orland, Nucl.
Phys. B 270, 457 �1986�.

�14� J. Jurkiewicz and A. Krzywicki, Phys. Lett. B 392, 291
�1997�.

�15� P. Bialas and Z. Burda, Phys. Lett. B 384, 75 �1996�.
�16� P. Bialas, Z. Burda, and D. Johnston, Nucl. Phys. B 493, 505

�1997�.
�17� J. Ambjorn, B. Durhuus, and T. Jonsson, Phys. Lett. B 244,

403 �1990�.
�18� Z. Burda, J. Erdmann, B. Petersson, and M. Wattenberg, Phys.

Rev. E 67, 026105 �2003�.
�19� Z. Burda, J. D. Correia, and A. Krzywicki, Phys. Rev. E 64,

046118 �2001�.
�20� J. Ambjorn, P. Bialas, J. Jurkiewicz, Z. Burda, and B. Peters-

son, Phys. Lett. B 325, 337 �1994�.
�21� P. Bialas, Z. Burda, and J. Jurkiewicz, Phys. Lett. B 421, 86

�1998�.
�22� M. Bauer and D. Bernard, e-print arXiv:cond-mat/0206150.
�23� The trees considered in Refs. �13� and �15� were planar. Here

we do not impose such a restriction. The only difference is the
appearance of the 1 / �q−1�! factor. This is due to the fact that
now we are free to permute branches emerging from the ver-
tex.

LONG-RANGE DISASSORTATIVE CORRELATIONS IN … PHYSICAL REVIEW E 81, 041136 �2010�

041136-7

http://dx.doi.org/10.1016/0550-3213(95)00381-2
http://dx.doi.org/10.1016/0370-2693(96)00155-4
http://dx.doi.org/10.1016/S0920-5632(96)00769-4
http://dx.doi.org/10.1016/S0550-3213(00)00202-9
http://dx.doi.org/10.1103/PhysRevLett.87.258701
http://dx.doi.org/10.1103/PhysRevLett.87.258701
http://dx.doi.org/10.1016/j.physa.2003.06.002
http://dx.doi.org/10.1016/j.physa.2003.06.002
http://dx.doi.org/10.1103/PhysRevE.68.026112
http://dx.doi.org/10.1103/PhysRevE.77.036124
http://dx.doi.org/10.1103/PhysRevE.79.067103
http://dx.doi.org/10.1103/PhysRevE.79.067103
http://chaosbook.org/FieldTheory/
http://dx.doi.org/10.1016/0196-8858(80)90008-1
http://dx.doi.org/10.1016/0196-8858(80)90008-1
http://dx.doi.org/10.1016/0550-3213(86)90563-8
http://dx.doi.org/10.1016/0550-3213(86)90563-8
http://dx.doi.org/10.1016/S0370-2693(96)01559-6
http://dx.doi.org/10.1016/S0370-2693(96)01559-6
http://dx.doi.org/10.1016/0370-2693(96)00795-2
http://dx.doi.org/10.1016/S0550-3213(97)00192-2
http://dx.doi.org/10.1016/S0550-3213(97)00192-2
http://dx.doi.org/10.1016/0370-2693(90)90337-6
http://dx.doi.org/10.1016/0370-2693(90)90337-6
http://dx.doi.org/10.1103/PhysRevE.67.026105
http://dx.doi.org/10.1103/PhysRevE.67.026105
http://dx.doi.org/10.1103/PhysRevE.64.046118
http://dx.doi.org/10.1103/PhysRevE.64.046118
http://dx.doi.org/10.1016/0370-2693(94)90022-1
http://dx.doi.org/10.1016/S0370-2693(98)00009-4
http://dx.doi.org/10.1016/S0370-2693(98)00009-4
http://arXiv.org/abs/arXiv:cond-mat/0206150

